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Abstract

We present an efficient technique to render single scattering in large
scenes with reflective and refractive objects and homogeneous par-
ticipating media. Efficiency is obtained by evaluating the final ra-
diance along a viewing ray directly from the lighting rays pass-
ing near to it, and by rapidly identifying such lighting rays in the
scene. To facilitate the search for nearby lighting rays, we convert
lighting rays and viewing rays into 6D points and planes according
to their Pliicker coordinates and coefficients, respectively. In this
6D line space, the problem of closest lines search becomes one of
closest points to a plane query, which we significantly accelerate
using a spatial hierarchy of the 6D points. This approach to light-
ing ray gathering supports complex light paths with multiple reflec-
tions and refractions, and avoids the use of a volume representation,
which is expensive for large-scale scenes. This method also utilizes
far fewer lighting rays than the number of photons needed in tradi-
tional volumetric photon mapping, and does not discretize viewing
rays into numerous steps for ray marching. With this approach, re-
sults similar to volumetric photon mapping are obtained efficiently
in terms of both storage and computation.

Keywords: single scattering, ray tracing, spatial hierarchy,
Pliicker coordinates and coefficients

1 Introduction

Single scattering in participating media becomes significantly more
challenging to render when occlusions and specular bounces are in-
volved. There exist two principal reasons for this. The first is the
increased complexity of light paths when these additional forms of
light interaction are present. This produces various visual effects
such as glows around light sources [Sun et al. 2005], volumetric
shadows and light shafts [Max 1986], and volumetric caustics. The
second reason is that the visual effects of single scattering are typ-
ically high frequency [Walter et al. 2009], and thus require dense
sampling of light flux in order to render them correctly. This dense
sampling leads to substantial storage and computation costs, limit-
ing both performance and the size of scenes that can be rendered
in practice. In our work, we propose an algorithm that is efficient
in rendering the high frequency effects of single scattering in large
scenes of homogeneous participating media, while accounting for
light interactions such as occlusions and multiple specular bounces.

In prior work, the only effective approach for processing complex
light paths while maintaining high rendering quality is volumetric
photon mapping [Jensen and Christensen 1998]. However, a scene
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(a) LSG (b) VPM
26 min (CPU), 3.7 min (GPU) 729 min (CPU)
404 MB (CPU), <800 MB(GPU) 7.1 GB (CPU)

Figure 1: Statuettes, rendered by line space gathering (LSG) and
volumetric photon mapping (VPM). The scene contains 41K trian-
gles and is illuminated by a single point light source. The full im-
ages have a resolution of 512 X 512 with 2 X 2 supersampling. CPU
and GPU performance is measured on a Dell PowerEdge 2900 with
dual Intel Xeon X5470 3.33 GHz quad-core CPUs and an NVIDIA
GeForce GTX 280 graphics card, respectively.

full of fine details and high frequency lighting effects leads to a pro-
hibitive cost in computation and memory. Our method can reduce
the heavy load of computation and memory by more than one order
of magnitude. This reduction in memory consumption is important
because it allows for an implementation on GPUs, which brings an-
other order of magnitude improvement in performance. For exam-
ple, rendering the scene of Figure 1 by volumetric photon mapping
takes more than 7 GBytes of memory and 12 hours of computa-
tion time on a PC with dual Intel Xeon X5470 3.33 GHz quad-core
CPUs, but takes only 3.7 minutes on an NVIDIA GeForce GTX
280 graphics card with our algorithm. This acceleration is gained
while maintaining comparable rendering quality.

The key ingredient of our algorithm is line space gathering, a
novel and efficient method for collecting single scattering flux along
viewing rays. This procedure is performed in a parametric line
space containing the lighting and viewing rays. Rather than trace
numerous photons and search for them at sample points along view-
ing rays, our method identifies points at which lighting rays and
viewing rays intersect or nearly intersect, and evaluates radiance
transport directly at these points where the scattering events oc-
cur. Since the number of lighting and viewing rays is considerably
smaller than the number of photons and sample points in volumet-
ric photon mapping, this method offers much greater efficiency in
terms of both storage and computation. Typically, the number of
lighting rays is about 1% of the number of photons, with rendering
results of similar quality.

The main challenge of line space gathering lies in rapidly finding
the points where lighting and viewing rays approximately inter-
sect. Although it is straightforward to determine whether two given
lines intersect, how to efficiently query for lines (lighting rays) that
nearly intersect a given line (viewing ray) is an open problem, and
one that increases in complexity when considering rays that un-
dergo many direction changes within the scene. A search for near-
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est line segments is fundamentally different from that for nearest
points used in volumetric photon mapping. This is because an ef-
fective hierarchy of the 3D space cannot in general be constructed
for line segments due to their length in the scene, which leads to
many intersections with splitting planes.

We address this problem by employing a parametric line space to
represent ray segments, and constructing a spatial hierarchy within
this space. Ray segments are approximated by the infinite lines they
lie on, and are converted to the 6D parametric space of Pliicker co-
ordinates and coefficients in which the lighting rays and viewing
rays are represented as points and planes, respectively. In this 6D
parametric space of rays, a spatial hierarchy can be effectively con-
structed on the 6D points of lighting rays, and the search becomes a
plane query within a set of points. Since this search finds intersec-
tions between lines instead of line segments, it is used to efficiently
cull lighting ray segments for a given viewing ray segment, leaving
a relatively small number of segments for a more computationally
intensive direct intersection evaluation. At the intersection points,
the radiance transport can be rapidly evaluated from the initial flux
at the beginning of each segment, since the attenuation and scatter-
ing coefficients are constant in a homogeneous medium.

Our technique of line space gathering is not limited to certain types
of light paths or volumes of fixed resolution. Also, it can be easily
integrated into the ray tracing framework as a substitute for vol-
umetric photon mapping to render single scattering in a homoge-
neous volumetric material. In addition, as exemplified in Figure 8,
this work can be combined with other techniques such as photon
mapping and shadow maps to efficiently handle single scattering
within a more comprehensive rendering system.

2 Related works

Monte-Carlo ray tracing and volumetric photon mapping
Monte Carlo ray tracing [Kajiya 1986] offers the most general so-
lution for rendering various types of light interactions, but the high
computational complexity precludes its use for radiance computa-
tion in volumes. Based on bidirectional Monte-Carlo ray tracing,
volumetric photon mapping [Jensen and Christensen 1998] pro-
vides an efficient, physically accurate solution for participating me-
dia using photons to represent flux. However, the storage of numer-
ous photons and the cost of radiance computation from them limit
performance and the scale of rendered scenes.

Optimizations of these techniques have been presented for faster
rendering. In [Jarosz et al. 2008b], point queries are replaced with
a beam query in the photon gathering pass, to avoid discretiza-
tion of straight viewing rays. Our method also employs a beam
query, but instead gathers the flux contributions of lighting rays. In
[Jarosz et al. 2008a], radiance caching is shown to bring significant
speedups in Monte Carlo ray tracing of large scenes with partic-
ipating media. Light paths containing multiple specular bounces,
however, cannot be processed in this way.

Gathering points for photon mapping may be sampled at non-
regular intervals along a viewing ray. In the hair rendering method
of [Moon and Marschner 2006], the gathering points lie only on the
hair fibers. For our technique, flux is gathered only at points where
the viewing ray is in close proximity to a lighting ray.

Eikonal rendering with volume representation A common al-
ternative approach to interactive or real-time performance has been
to employ approximations on the scene. One such approximation
is to discretize the scene as a fixed resolution volume, with scatter-
ing parameters and the flux of lighting rays stored in voxels. Flux
transport among the voxels is then computed according to a first or-
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der approximation of the Eikonal equation, as well as reflection and
refraction [Thrke et al. 2007; Sun et al. 2008]. In comparison to pro-
cessing an enormous number of photons, voxel based computation
significantly reduces rendering and storage costs. But since render-
ing performance depends greatly on the resolution of the volume,
large scenes and complex geometry cannot be processed in practice
without a significant loss of rendering quality.

Explicit solution of light paths A second approximation is to
consider only certain types of scenes in which light paths can be ex-
plicitly solved [Mitchell and Hanrahan 1992; Chen and Arvo 2000;
Iwasaki et al. 2002; Ernst et al. 2005; Kriiger et al. 2006; Hu et al.
2010; Walter et al. 2009]. For example, the work of [Walter et al.
2009] renders transparent objects whose convex hull is bounded by
a triangle mesh. Scenes for which explicit solution is possible gen-
erally exclude many visual effects, such as light source glows and
volumetric caustics seen through reflectors and refractors.

Real-time single scattering for fog, volumetric shadows and
volumetric caustics Methods for real-time rendering of fog ef-
ficiently account for single scattering but assume straight, unoc-
cluded rays [Shreiner et al. 2005; Sun et al. 2005; Zhou et al. 2007].
To rapidly render high-quality volumetric shadows, adaptive sam-
pling of viewing rays [Wyman and Ramsey 2008] and media vol-
umes [Ren et al. 2008] has been employed. In [Zhou et al. 2008b],
volumetric shadows are generated with environment lighting.

Volumetric caustics present a greater challenge because light paths
often include multiple specular bounces such as reflection and re-
fraction. Some techniques assume lighting rays to undergo only a
limited number of reflections or refractions [Iwasaki et al. 2002;
Ernst et al. 2005], and cannot handle optically complex scenes such
as Figure 7 where many rays have 15 bounces or more. To han-
dle complex light paths, lighting rays can be refracted multiple
times in camera space, and then splatted directly to screen pixels
[Kriiger et al. 2006]. Attenuation of the refracted lighting rays can
be also incorporated [Hu et al. 2010; Papadopoulos and Papaioan-
nou 2009]. Many GPU aided methods of this kind employ raster-
ization to accelerate ray marching [Ernst et al. 2005; Kriiger et al.
2006; Hu et al. 2010; Papadopoulos and Papaioannou 2009], but
must assume no specular interactions of viewing rays so that their
positions in the perspective space can be determined.

Parametric line spaces Line primitives have been used in var-
ious graphics problems besides volumetric caustics rendering. In
the visibility tests of [Teller 1992; Bittner 2003], Pliicker coordi-
nates are used to determine whether a line lies within a given spatial
domain, i.e., evaluating membership to a set of lines. By contrast,
our method seeks to determine nearness of a line, since in practice
the probability of exact intersections between lighting and viewing
rays approaches zero. To evaluate nearness of lines in the primal
space, we derive a corresponding measure in Pliicker coordinates
that can be efficiently computed. Light rays nearest to a surface
point are gathered in [Havran et al. 2005] for computing global il-
lumination. Since point queries are used, gathering is efficiently
performed directly in the primal space, rather than in a parametric
line space.

3 Radiance Estimation of Single Scattering

Within a participating medium, the radiance transfer between two
points from o to = along a line segment with direction & can be
expressed as

L(z, @) = 7(wo,2)L (z0, W)+ Ls (z,20) )



Figure 2: For single scattering, radiance transfer is evaluated at
the intersection points between lighting rays and viewing rays.
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Following the notation in [Jensen and Christensen 1998], L (x, &)
represents the radiance arriving at point x along direction .
L; (x', ) is the in-scattered radiance at point z’ towards x.
7 (2, x) is the transmittance between these two points, computed

as e Jar #(O)4€  1 denotes the extinction coefficient, which is the
sum of the scattering coefficient o and the absorption coefficient cv.
f(2', W’ &) is the normalized phase function that determines the
relative proportion of light arriving at 2" from direction @' that is
scattered toward direction &' .

Traditional volumetric photon mapping [Jensen and Christensen
1998] uniformly samples the values of L; in Equation (3) along the
viewing rays. At each sample point, L; is computed by gathering
the energy of all photons within a radius r:
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In volumetric photon mapping with beam query [Jarosz et al.
2008b], Equation (2) is directly evaluated for a line segment, in-
stead of solving Equation (3) with multiple samples as in Equation
(4). The energy of all photons is gathered within a cylinder centered
about the line segment between x and zo with a fixed radius r:
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As illustrated in Figure 2, the radiance transfer for single scattering
should be evaluated at the intersection points between lighting rays
and viewing rays. At an intersection, some flux from the lighting
ray is lost along the viewing ray during scene traversal. Analogous
to the beam gathering of photon energies in Equation (5), the radi-
ance contributed by a lighting ray to the viewing ray as shown in
Figure 2 can be computed as
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where is @’ is the direction of the lighting ray I, and ®; (z’, @’)
is the flux it carries at z’ along the ray direction. Since the radius
of the beam is very small, we consider the flux of the ray and the
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Figure 3: Rendering with nearest line search of line queries. We
first trace rays from the light sources and viewpoint. Then we gather
radiance from the lighting rays at the intersection points for each
viewing ray. The radiances along viewing rays are deposited to
corresponding pixels to generate the final image.

traversed volumetric material to be approximately constant, such
that w (', z, @’, W) can be moved outside of the integral:

_ d2) 3
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where 2’ is the point on the lighting ray [ closest to the line seg-
ment between x and xo, and d is the corresponding distance. The
angle between the two rays is denoted by 6, which is clamped to a
minimum threshold to avoid division by zero. From Equation (8),
we obtain a simple approximation of Equation (2) as the summed
radiance contributed by all lighting rays passing through the cylin-
der:

ZL x, To, 1) 9)

In this formulation, it is assumed that the closest points between the
lighting and viewing rays do not lie at endpoints of a ray segment.
Since ray segments in a scene are generally much longer than the
gathering radius 7, such cases have little effect on the final solution
and can be safely ignored.

CC:L’O

Although in theory the radiance computation should consider only
exact intersections between lighting rays and viewing rays, a kernel
of radius r is needed in practice since the probability of two lines in-
tersecting each other approaches zero. Equations (1) and (9) allow
for direct computation of radiance transport between lighting rays
and viewing rays without an intermediate representation of photons
and sampling points, as shown in Figure 3. We capitalize on the
efficiency obtained using line-to-line intersections in the following
steps of our proposed algorithm:

1. Construct the spatial hierarchy on the geometry of the scene.

2. Trace rays from light sources and viewpoint. The rays may
be reflected and refracted as they traverse the scene. Com-
pute the initial flux of each lighting ray segment and the initial
transmittance-to-viewpoint of each viewing ray segment.

3. Convert the lighting and viewing rays to the parametric line
space, and construct a spatial hierarchy on the lighting rays.

4. In the parametric line space, gather the lighting rays that in-
tersect each viewing ray and compute the radiance transfer
between them. The final radiances of the viewing rays are
deposited to the corresponding shading pixels to produce the
final image.
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In our work, we employ a kd-tree [Zhou et al. 2008a; Hou et al.
2009] for the first step. For the second step, the rays from light
sources are generated in a manner similar to photon mapping, with
initial flux set to a constant, and density and directions determined
by the energy emission distribution of the light sources. The last
two steps deal with how to efficiently search for the nearest lighting
rays for each viewing ray, and are described in detail in the follow-
ing section.

4 Spatial Hierarchy in Parametric Line Space

For our algorithm, high performance necessitates efficient search
for nearest line segments between lighting and viewing rays. Most
problems of nearest neighbor search in low dimensions can be ac-
celerated by spatial hierarchies. However, the line segments of rays
generally cross large portions of the scene and are too long to be
efficiently clustered by space splitting techniques such as kd-trees.
Furthermore, the orientations of line segments are often far from
those of axis aligned planes, leading to primitives with large bound-
ing boxes in a bounding volume hierarchy (BVH).

Spatial hierarchies generally favor small primitives, ideally a set of
points. In this work, we utilize Pliicker coordinates to convert light-
ing rays to points, and construct spatial hierarchies on points instead
of line segments. Our solution is inspired by a recent study on near-
est affine subspace search in the area of pattern recognition [Basri
et al. 2009]. Their method maps subspaces to points in a higher
dimensional space prior to nearest neighbor search. It is, however,
unsuitable for our application for three reasons. First, the distance
between two affine subspaces is fundamentally different from our
distance of two straight lines. Second, the data set is converted to
points of very high dimensions, 11D or more, in which processing
incurs high memory and computation costs. Third, a large constant
offset is introduced in the distance computation, which slows traver-
sal through the hierarchy and reduces floating-point precision. We
instead develop a nearest line search tailored to our work.

4.1 Review of Pliicker Coordinates and Coefficients

Introduced by Julius Pliicker in the 19th century, Pliicker coordi-
nates and coefficients are widely used in computational geometry
[Stolfi 1988]. Given a oriented straight line { in 3D space defined
by two points a = (a1, az,as,as) and b = (b1, bz, bz, ba) in ho-
mogeneous coordinates, we can compute the corresponding Pliicker
coordinates 7 (1) and coefficients w () as

() =
w(l) =
ligy =

(La,2y, Lasys Laay s Liaays Loy ls,ay) - (10)

(Iz,ays —l2,ay, L3y a,ays =l sy, Loy ) D)
aibj — lljbi. (12)

Because of geometric duality, each straight line in 3D space maps
to a point in 6D space as its Pliicker coordinates and a hyperplane
passing through the origin in 6D space with its Pliicker coefficients.

The incidence of lines in 3D space can be easily determined from
their Pliicker coordinates and coefficients. Consider two lines [ and
I" determined by four vertices a,b and a’,b" as shown in Figure
4. The dot product of 7 (1) and @ (I') can be expressed as the
following 4 x 4 determinant of the four vertices:

al az as a4
b b b b
T (l) Lev) (l/) = a11’ CL22/ aj/ a:/ . (13)

b1 by’ b3 bs

If the two lines lie on the same plane, this determinant is equal to
zero. Geometrically, this is because the determinant has a rank of at
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Figure 4: Two 3D lines determined by four vertices. The volume
of the tetrahedron constructed by the four vertices is used as our
measure of distance between the two straight lines.

most three if one of the vertices lies on the plane determined by the
other three vertices. Except for the special case of parallel lines, a
zero determinant indicates an intersection between the two lines.

4.2 Distance Computation between Straight Lines

Instead of searching for straight lines that exactly intersect, our
method seeks lines nearest to a viewing ray. The distance between
lines is not equal to the determinant of Equation (13), so we derive
an approximation that is related to it.

We first convert the four vertices that define the two lines, shown in
Figure 4, from homogeneous coordinates to their equivalent Carte-
sian coordinates with the last coordinate value set to one. With this
conversion, the absolute magnitude of the determinant in Equation
(13) becomes equal to one-sixth of the volume of the tetrahedron
defined by the four vertices.

The volume of the tetrahedron is not solely determined by the dis-
tance between the two straight lines, but is related as follows:
— 1 /
V{a,b,a’,b’} = 6 ‘ﬂ'(l).w(l )’
1
= —b "—b ||dsing (14
Slasb [ o v [dsing (4

Y

where d and 6 are the distance and the angle between the two
straight lines. This inequality becomes an equality when the closest
points of the two lines lie on the line segments (a, b) and (a’, b’).

For each of the two lines, we position the vertices at a fixed distance
c apart such that (a,b) and (a’,b") span the scene. If the closest
points on the two lines exist within the scene, the lower bound of d
in Equation (14) becomes

6 Viaba b '
0> Voo _r@)ew () s

- c? c?

which is used as our distance metric between two straight lines.
Since this measure provides only a lower bound on distance, we
use it to gather all the lines that potentially lie near to a viewing ray.

After gathering lines in this manner, we explicitly compute the dis-
tance between the line segments to remove cases where the actual
distance is greater than 7 or the closest points lie outside the viewed
scene. With this approach, considerable computation is saved by
performing the exact distance calculation on only a small subset of
all the line segment pairs.

4.3 Spatial Hierarchy Construction

Our distance measure, the scaled absolute magnitude of the de-
terminant in Equation (13), represents the distance in 6D space
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Figure 5: Comparison of different parameters settings for line space gathering (LSG) and volumetric photon mapping (VPM). (a)(b) are
the same as Figure 1(a)(b). (c)(g) are closeups of the green boxes in (a)(b), respectively, and have parameter settings of | = 1,636K,
r = 0.0001, p = 89M, knn = 128, A, = 0.002. (d) to (f) are results of LSG with different parameter values, as are (h) to (j) for VPM.

of a point with coordinates 7 (I) and a hyperplane with coeffi-
cients @ (I'). We convert the lighting rays to 6D points by their
Pliicker coordinates, and the viewing rays to 6D hyperplanes by
their Pliicker coefficients. Obtaining the nearest lighting rays to a
given viewing ray is then formulated as a problem of finding the
nearest points to the corresponding hyperplane in the 6D space.

To efficiently identify the nearest points, we construct a hierarchy
of a perfect 8-ary tree in the 6D space. After converting the lines to
corresponding Pliicker coordinates, we use two steps to construct
the hierarchy:

1. We construct a balanced kd-tree with median splitting. Each
leaf node contains at least 4 points.

2. We collapse every three non-leaf levels into one level. Thus
each non-leaf node has exactly 8 children.

The constructed tree is stored in the breadth-first search order. Each
node stores its bounding box as 12 floating-point values. According
to the order of the corresponding leaf nodes in the constructed tree,
the 6D points are sorted and deposited consecutively in a buffer.
Each leaf node contains two additional integers to represent its
range of indices in the buffer. We traverse the hierarchy in depth-
first order. The buffer locations of parents, children and siblings can
be determined from a node’s position since the hierarchy is a per-
fect 8-ary tree. This technique is a form of stackless traversal. In the
GPU implementation, each traversal thread keeps only the current
node and its index in registers or shared memory; local memory is
not required.

The hierarchy culls about 99.5% of line intersection tests compared
with exhaustive testing. Among the line intersections that remain
after culling, about 10% of them are valid. Note that we tried many
different spatial hierarchy candidates before reaching the current
solution. Construction in primal space failed as expected. In line
space, we have tried octree, uniform grid, traditional BVH and kd-
tree with heuristics of surface area (SAH), voxel volume (VVH) and
bounding aspect ratio (BAR). We have also tried different numbers
of children for non-leaf nodes, and storing the splitting dimension
and splitting position instead of the bounding box. These different
candidates may use less storage or cull more intersection tests, but
all have performance much worse than our current solution. The
other approaches are unsuitable for our work mainly because we
use plane queries in line space, rather than point queries, which
consume significant time on inner node traversal. An exception is
BAR, but its complex data structure is inefficient for GPU process-
ing. By contrast, the perfect 8-ary trees that we use allow for regular
memory accesses.

5 Experiments and Results

We implemented a GPU version of the described algorithms in
NVidia’s CUDA on an NVIDIA GeForce GTX 280 graphics card
with 1 GByte of memory. We also implemented a CPU version
on dual Intel Xeon X5470 3.33 GHz quad-core CPUs for perfor-
mance comparisons to volumetric photon mapping, which was also
executed on this platform. All images shown in this paper have a
resolution of 512 x 512 with 2 x 2 supersampling, except for Figure
8 which has 4 x 4 supersampling.

Renderings with our line space gathering (LSG) technique are com-
pared to volumetric photon mapping (VPM) in Figures 1, 6 and 7.
We denote the parameters for LSG as [ for the number of lighting
rays and r for the gathering radius. The parameters for VPM are p
for the number of photons, knn for the number of photons gathered
at each sampling point, and A, for the ray marching step size, with
the maximum bounding box dimension of the scenes set to 1.

Complex lighting features are generated among the four statuettes
in Figure 1. Here, we disregard reflections of lighting rays in order
to emphasize the effects of refraction, such as the high frequency
volumetric caustics seen directly through the refractors. LSG in (a)
produces results comparable to VPM in (e) with a speedup of more
than two orders of magnitude.

We examine how changes in parameter settings affect our LSG al-
gorithm and VPM in Figure 5, the scene of four statuettes exhibited
in Figure 1. At the original parameter settings, LSG in Figure 5(a)
produces results comparable to VPM in (b) with a speedup of more
than two orders of magnitude. Closeups of (a) and (b) are shown in
(c) and (g), respectively.

The parameters [ in LSG and p in VPM each control the number
of light flux samples in their respective algorithms. Reducing these
values elevates noise in (d), while increasing blur in (h). This dif-
ference is due to the fixed value of knn, which leads to a larger
sampling radius when the number of photons is reduced. The pa-
rameters 7 in LSG and knn in VPM are also related in that they
both affect the breadth of flux sampling in radiance computation.
Decreasing these two parameters in (e) and (i) increases sharpness
and noise in both cases. However, the structure of noise differs ac-
cording to flux representation. While VPM exhibits grainy effects,
subtle line patterns appear in LSG. When r is increased in (f), there
exists more blurring in LSG.

Usually the gathering radius r is quite dependent on the number of
lighting rays . With more lighting rays launched, a smaller radius
is used. If a small number of rays and a large radius are used, the

ACM Transactions on Graphics, Vol. 29, No. 4, Article 54, Publication date: July 2010.



54:6 .

X. Sun et al.

(a) LSG
73 min, 354 MB (CPU); 6.5 min (GPU)

(b) VPM
438 min, 7.1 GB (CPU)

(c) VPM
7.3 min, 1.8 GB (CPU)

Figure 6: Soccer player. The scene contains 43K triangles and is illuminated by three point light sources. Coefficients of the participating
media are k = 0.3, 0 = 0.2. Parameter settings are (a) | = 1,535K, r = 0.0005; (b): p = 92M, knn = 128, A, = 0.002; (c):

p = 24M, knn = 16, A, = 0.01.

(a) LSG
53 min, 229 MB (CPU); 5.3 min (GPU)

(b) VPM
843 min, 4.5 GB (CPU)

Figure 7: Crystal Taj Mahal. The scene contains 53K triangles
and is illuminated by a point light source. Coefficients of the par-
ticipating medium are k = 0.3, 0 = 0.2. Parameter settings are (a)
l=677K, r =0.0003; (b) p = 64M, knn = 128, A, = 0.001.

final image becomes quite blurry. These parameters are difficult to
set based on physical properties. In our experiments, the radius is
set to be large enough to avoid artifacts from under-sampling. If
the result is blurry, we launch more rays and reduce the gathering
radius. This scheme is similar to setting the photon number p and
knn in VPM.

Both reflection and refraction are employed in rendering the soccer
player of Figure 6, producing a multitude of high frequency light-
ing effects. Volumetric caustics are visible from reflectors as well
as refractors, such as the red caustics generated by the soccer ball
that are reflected and refracted by the player’s body. For viewing
rays that reflect towards volumetric caustics, bright projections of
the caustics are found at the reflection points, such as the bright
spot on the left side of the ball. Besides volumetric caustics, glows
around light sources are reflected on the objects as well. For the
given parameter settings, LSG and VPM yield similar renderings as
shown in (a) and (b). But when the VPM parameters are adjusted
to match the performance of LSG, there is a large degradation in
quality, exhibited in (c).

Line space gathering can be easily combined with other popular
ray tracing techniques, as demonstrated for a crystal Taj Mahal in
Figure 7. In (a), LSG is used to render volumetric caustics while
photon mapping is applied to render surface caustics. Since the
crystal Taj Mahal is composed of many components, light travels
through the scene along complex paths with many specular interac-
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(a) Washroom. 31.7 min (GPU)

(a) Underwater. 30.5 min (GPU)

Figure 8: Two complex scenes rendered with a combination of
techniques including shadow mapping, photon mapping and our
line space gathering. Various lighting effects, such as shadows and
caustics, are generated both on surfaces and in volumes. Coef-
ficients of the participating media in both scenes are k = 0.03
and o = 0.02. Scale of the scenes: (a) 72K triangles; (b) 93K
triangles. Parameters of line space gathering: (a) | = 2.6M,
r = 0.0001; (b) I = 8.9M, r = 0.0005.

tions. The intricacy of flux transport in this example leads to various
fine-scale details. Even though many of the lighting rays consist of
numerous short line segments, this method nevertheless is consid-
erably more efficient in computation and storage than volumetric
photon mapping shown in (b).

Two additional examples that apply line space gathering in conjunc-
tion with other rendering techniques are exhibited in Figure 8. In
the two scenes, single scattering in homogeneous media is rendered
by our method, while the volumetric shadows and light shafts are
computed by shadow mapping, and the surface caustics by photon
mapping. In (a), the fog effects result from both direct lighting from
a window and reflected lighting by the mirror and metallic basin.
The cyan bottle generates volumetric caustics in two directions cor-
responding to the direct lighting and mirror reflected lighting. In
(b), the reflections and refractions of the submerged submarine gen-
erate caustics generated both in the water and on the sand. The top
part of the submarine exhibits reflections of volume caustics, while
the bottom of the submarine reflects caustics from the surface be-
low. The scene is illuminated by indirect and volumetric ambient
lighting.

We also compare the differences in rendering quality between line
space gathering and Eikonal rendering with adaptive photon tracing



(a) LSG, 44.8 sec(GPU)

(b) Eikonal rendering, 200 ms(GPU)

Figure 9: Comparison of line space gathering and Eikonal render-
ing with adaptive photon tracing. Coefficients of the participating
medium are k = 0.02, o = 0.01. Scale of the scenes: (a) 10K tri-
angles; (b) the volume resolution is 128 x 128 x 128. Parameter
settings are (a) l = 1M, r = 0.001; (b) 1M photons are shot with
about half of them hitting a refractive object, and the marching step
size in the light and view passes is a half voxel.

[Sun et al. 2008], in Figure 9. To maximize the quality of the ob-
ject models, the volume for Eikonal rendering is arranged to tightly
bound the two Tweety models. We note that with this scene and
parameter settings, increasing the photon count and decreasing the
step size does not improve Eikonal rendering. Several differences in
the rendering results of the two algorithms are evident. In the volu-
metric caustics, LSG is seen to be appreciably sharper than Eikonal
rendering, which is limited by the volume resolution. The bounds
of the Eikonal rendering volume also contribute to lower render-
ing quality. At the left side of (b), the volume caustics are clipped
because they extend outside of the rendering volume. The volume
bounds also degrade results in an indirect manner, since media scat-
tering that occurs outside of the volume does not provide radiance
to the scene, as exemplified by the weak surface reflections on the
right sides of the Tweety models. By contrast, the line representa-
tion used in LSG does not have these issues.

Performance and memory comparisons between our technique and
volumetric photon mapping are listed in Table 1. For CPU imple-
mentations of both algorithms with comparable levels of rendering
quality, our line space gathering uses more than an order of magni-
tude less memory, and also has about one order of magnitude higher
rendering performance. With our GPU implementation of LSG,
performance improves by another order of magnitude. To utilize
the parallelism of GPUs, a large number of viewing rays should be
produced before line space gathering, but this requires considerable
temporary storage. We employ a memory bounding scheme as in
[Hou et al. 2009] to obtain a good tradeoff between parallelism and
the scale of scenes. We set the bound on GPU memory usage to 800
MBytes so that the algorithm can run on an NVIDIA GeForce GTX
280 graphics card with 1 GByte of memory. For the scene in Figure
8 (b), there are too many lighting rays to fit in video memory, so we
divide them into four parts and perform gathering on them one by
one. Because we use a fixed gather radius of r, the sum of the four
results is equivalent to processing all the lighting rays together.

We present comparisons of our method to [Jensen and Christensen
1998] instead of [Jarosz et al. 2008b] mainly for two reasons. First,
[Jensen and Christensen 1998] is widely used as a ground truth
for rendering quality, so we compare our renderings with it di-
rectly. Second, we focus on high quality rendering of large scenes,
which requires a considerable number of photons, and the mem-
ory needed for [Jarosz et al. 2008b] is more than double that of
[Jensen and Christensen 1998]. For most of our scenes, such as the
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Line Space Gathering Volumetric Photon Mapping
Figure Memory Time Time Memory Time
MBytes Minutes Minutes GBytes Minutes

(CPU) (CPU) (GPU) (CPU) (CPU)
1 404 26 3.7 7.1 729
6 354 73 6.5 7.1 438
7 229 53 5.3 4.5 843
8 (a) NA NA 31.7 NA NA
8 (b) NA NA 30.5 NA NA
9 (a) NA NA 0.75 NA NA

Table 1: Performance and memory comparisons between our tech-
nique of line space gathering and volumetric photon mapping.

one of statuettes in Figure 1, [Jarosz et al. 2008b] requires more
than 16GBytes of memory, which is more than our workstation and
most popular desktops/workstations (2-4GBytes RAM) can handle.
Note that based on reported statistics, [Jarosz et al. 2008b] brings
a 5x-50x improvement in performance, while our GPU method
yields a 70x-200x improvement. This efficient GPU implementa-
tion can be attributed to the much lower memory consumption of
our method.

In our experiments, the ray shooting and hierarchy construction of
LSG takes less than 5 seconds on GPUs and less than 1 minute
on CPUs. The photon shooting and kd-tree construction of VPM
takes about 10 minutes on CPUs. For LSG, generally most of the
time consumption is for gathering. Since the pre-process is just a
small part of the run-time computation, it was not carefully opti-
mized. We aimed only to improve the quality of the spatial hierar-
chy without taking the construction cost into account. The reported
performance does not include the preprocessing time because the
pre-process takes substantial time for VPM on the CPU in the case
of Figure 6 (c), where performance is set to match that of LSG in
Figure 6 (a). In fact, the preprocessing time for VPM in this case
actually exceeds the rendering time, making it hard for an “equal
performance” comparison to be made.

6 Conclusion

We have presented a technique for efficient rendering of single scat-
tering in large scenes with homogeneous participating media and
reflective and refractive objects. The improvement of rendering
performance is achieved without restrictions on the light paths or
the scale of scenes. Moreover, lighting rays can undergo an ar-
bitrary number of specular interactions as they travel through the
scene, and the visual quality of radiance estimation is not limited
by the resolution of a volume. As a result, various lighting features
such as light glows, volumetric shadows and caustics can be swiftly
generated for scenes of high complexity.

The central idea of our work is to evaluate single scattering only
at the intersection points between lighting rays and viewing rays.
Such computation can be significantly accelerated by constructing
a spatial hierarchy in the parametric line space of Pliicker coor-
dinates for the lighting rays. Though an increase from 3D to 6D
in the line representation incurs additional processing costs, our
overall solution greatly reduces the storage and computation load
in comparison to volumetric photon mapping, while maintaining
high rendering quality. With the rapid development of GPU com-
putation, we expect our technique to soon be useable in real-time
applications.

In future work, there are a few issues we intend to examine. We plan
to investigate methods for constructing a hierarchy based on line
segments instead of entire lines, which would elevate the efficiency
of our technique. In addition, we will experiment with adaptive
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kernels in the nearest neighbor search with the aim of improving
rendering quality in areas with low light ray density. Finally, we
plan to seek extensions of our technique for efficient rendering of
multiple scattering and inhomogeneous participating media.
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